Equivalence between module categories over quiver Hecke algebras and Hernandez–Leclerc's categories in general types

نویسندگان

چکیده

We prove in full generality that the generalized quantum affine Schur–Weyl duality functor, introduced by Kang–Kashiwara–Kim, gives an equivalence between category of finite-dimensional modules over a quiver Hecke algebra and certain subcategory which is generalization Hernandez–Leclerc's CQ. This was previously proved untwisted ADE types Fujita using geometry varieties, not applicable general. Our proof purely algebraic, so can be extended uniformly to general types.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Module Categories over Pointed Hopf Algebras

We develop some techniques for studying exact module categories over some families of pointed finite-dimensional Hopf algebras. As an application we classify exact module categories over the tensor category of representations of the small quantum groups uq(sl2).

متن کامل

Cluster Algebras, Quiver Representations and Triangulated Categories

This is an introduction to some aspects of Fomin-Zelevinsky’s cluster algebras and their links with the representation theory of quivers and with Calabi-Yau triangulated categories. It is based on lectures given by the author at summer schools held in 2006 (Bavaria) and 2008 (Jerusalem). In addition to by now classical material, we present the outline of a proof of the periodicity conjecture fo...

متن کامل

CLUSTER ALGEBRAS AND CLUSTER CATEGORIES

These are notes from introductory survey lectures given at the Institute for Studies in Theoretical Physics and Mathematics (IPM), Teheran, in 2008 and 2010. We present the definition and the fundamental properties of Fomin-Zelevinsky’s cluster algebras. Then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generator...

متن کامل

Module categories for group algebras over commutative rings

We develop a suitable version of the stable module category of a finite group G over an arbitrary commutative ring k. The purpose of the construction is to produce a compactly generated triangulated category whose compact objects are the finitely presented kG-modules. The main idea is to form a localisation of the usual version of the stable module category with respect to the filtered colimits...

متن کامل

Group Actions on Algebras and Module Categories

Let k be a field and A a finite dimensional (associative with 1) k-algebra. By modA we denote the category of finite dimensional left A-modules. In many important situations we may suppose that A is presented as a quiver with relations (Q, I) (e.g. if k is algebraically closed, then A is Morita equivalent to kQ/I). We recall that if A is presented by (Q, I), then Q is a finite quiver and I is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2021

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2021.107916